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Abstract. The dynamics and propagation effects in attosecond (asec) pulse
generation from high-order harmonic generation (HHG) of aligned one-
dimensional (1D) B molecules are investigated from numerical solutions of
fully coupled Maxwell and time-dependent Schrddinger equations (Maxwell-
TDSESs), in the highly nonlinear nonperturbative regime of laser—molecule
interaction. Density, laser-phase and propagation length effects are studied on
the total electric field and nonlinear polarization from the Maxwell-TDSE for
intense few cycle (800 nm) laser pulses interacting with a Zy&k. We show

how single and double asec pulses can be generated and propagated as a function
of the phase of individual harmonics created by ultrashort intense laser pulses
in aligned H molecules. We find furthermore extension of maximum HHG
plateaux with increasing gas pressure.
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1. Introduction

High-order harmonic generation (HHG) in atomic gases by high intensity ultrashort laser pulses
is the main method for producing coherent extreme ultraviolet and attosecond (asec)fulses [
This is based on a universal model of electron-recollision with a maximum harmonic energy,

Nhe = I,+3.17U,, (1)

wherel,, is the ionization potential of the atord, = e?E?/4mw? is the ponderomotive energy

of the electron in an oscillatory fiel& (t) of maximum intensityl = eE?/87 and frequency

o [2]-[7]. Molecules offer an interesting new medium as both ionization and recombination
steps are dependent on the particular symmetry of the highest occupied molecular orbital
(HOMO) and orientation ]-[8]. Furthermore, at large distances, stretched or dissociated
molecules offer the possibility of obtaining harmonics well beyond thg Gut-off law (1)

[5, 9, 10]. The recombination model allows a full tomographic reconstruction of the HOMO
to be performed (but a high degree of spatial alignment of the molecules is requijed [
[13]). The mathematical steps in structural retrieval from HHG are based upon the strong field
approximation (SFA), a single active electron model and a three-step pr@cggsi) tunneling
ionization with zero initial electron velocity; (ii) acceleration in the laser field); and (iii)
recombination back into the bound electronic state. This simple three-step model can be shown
to always produce a maximum return energy given Dyelven with nonzero initial velocity

upon ionization 4]. Nevertheless certain important issues remain, such as the influence of the
intense laser field upon the bound electronic states upon recombinadiiprié¢pletion of the

initial ground state 15], the influence of the Coulomb potential upon the continuum electron
states 16|, all effects neglected in SFA. Finally, one needs to consider macroscopic propagation
effects as these lead to interesting new phenomena such as filamentatidg][with the
conclusion that ionization dynamics can strongly influence the synthesis of isolated attosecond
pulses 9. In this paper, we address the problem of asec pulse generation and propagation
by HHG in an aligned molecular medium. We focus our attention on the single electron
H; system which nevertheless involves coupled electron—nuclear motion beyond the Born-
Oppenheimer approximatio2()]. For this H; system a previous time-dependent Schrodinger
equation (TDSE) simulation with exact non-Born—Oppenheimer solutions leads to enhanced
ionization and HHG in the presence of an asec XUV and IR fs pulse with the resulting
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efficient generation of new asec puls@g][ An appropriate Maxwell-TDSE equation for this
system was used based on a slowly varying envelope approximation (SVEA) leading to a
first-order partial differential equation for the coupled Maxwell-TDSE syst2#h [Such an
approach neglects ground state depletion due to ionization, neglects backward propagation and
is therefore appropriate for low field strengths. It was nevertheless found that initial asec pulses
could be shortened further in time through the resultant HHG asec pulses produced nonlinearly
in the presence of an intense IR fs pul8g][ In the present paper, we extend the Maxwell-TDSE
approach beyond SVEA in order to include the above neglected effects. Particular attention will
be given to the harmonic phases to understand more precisely the asec pulse generation.
Section2 is devoted to the presentation of the Maxwell-Schrédinger model initially
introduced in R4, 25]. In section3, we study the asec pulse generation mechanism using
in particular a model describing the transmitted electric field phase. Sett®mevoted to
numerical simulations for the propagation of electric fields and asec pulses inside an aljgned H
gaseous medium. We also present a new phenomenon, a study of the driver phase effect on the
HHG and laser pulse propagation.

2. Maxwell-TDSE model

We study the process of asec pulse generation by the analysis of harmonic phases, and their
behavior depending on the driver phase, using a model that is a micro—-macro Maxwell-TDSE
approach 24, 26]. It consists of the coupling of the Maxwell equations and TDSEs within or
beyond the Born—Oppenheimer approximation. The model is totally non-perturbative, vectorial
and multidimensional, taking into account ionization, and high-order nonlinearities going far
beyond classical and semi-classical nonlinear Maxwell and Schrodinger ma8e[2[]—-[29].

In the present work, we restrict ourselves to 1D TDSEs and 1D propagation in the fixed nuclei
approximation (Born—Oppenheimer), for which the equations are:

at BX(Z/v t) = CaZ/ Ey(z/7 t),
(2)
at Ey(z/, t) == Caz/ Bx(zl, t) - 4]7:8]: Py(z/, t),
where

Py(Z,t) = —n(Z) f Uz (Y, Oyy(y, t)dy = —n(Z) d(1). (3)

n(z) is the molecular density taken equal to a constgr the following, v, the wavefunction

of a molecule located at’ (the dipole approximation is used here). In the following, we
will denote by E the electric field componert,, and by P the componen®, of the field-
induced polarization. In the TDSEs, we suppose that the electric Eaklconstant in space
at the molecular scalay/A <« 1, so that the electric field i@, E(Z,t), is rewrittenE,(t).
Alternatively one can use the acceleration of the electron as givetdjr(Ffourier transform
a(w) = v?d(w)).

az. 1) = / v (v 0 +HE)v3 (.0 dy. (4)

In the 1D framework, we can then rewrite equatioy énd @) as the second-order wave
equation

V(Y. R)
ay

d2E(Z,t) —c?02,

E(Z,t) = —4md2P(1). (5)
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The 1D electron wavefunction is solved by the following TDSE:

2

In the previous equatiorky denotes the molecular internuclear distarzthe field propagation
coordinate and the electric field polarization corresponding to the electron coordinate. The
field model allows us to consider high-order nonlinearities as well as ionization. The model
is solved using a finite difference method described in detai2#, where a full non-Born—
Oppenheimer formulation is also presented. In the model, we solve one TDSE per Maxwell cell,
using a classical Crank—Nicolson scheme, correspondimgAa molecules. Each Maxwell
spatial stepAZ is chosen such thafz' < Anax/5, Wherelnay is the largest internal wavelength
considered in the computation (allowing then to consider high-order harmonics). For details we
refer to R4]. This model is then used to study asec pulse generation and propagation in the
presence of HHG.

In conclusion, as we solve one single TDSE per Maxwell ¢edl, a computation oN
TDSEs corresponds to a sample of gas of lemgthN Az and containingN Az'ng molecules,
where the molecular density is supposed constant.

. A
10z (Y, 1) = <—— +Ve(Y, Ro) +yEz’(t)> Yz (Y, 1). (6)

3. Theoretical study of harmonic phase effects on asec pulse generation

In order to understand the generation and dynamics of asec pulses, we propose a model to
approximate harmonic spectrum extrema. More precisely, we propose to approximate by a
continuous function the maxima and minima of the harmonic spectrum and to isolate one or two
asec pulses by Fourier transform filtering of these extrema. We then plan to model the frequency-
dependent harmonic phase functigriw) = arctalm(a(w))/Re(a(w)) of the acceleration
a(w) = |a(w)| expi¢ (w)), wherea(w) is the Fourier transform dd(t) defined in §). This will
be done near the cut-off frequency (a few-cycle laser pulse Witil 0" W cm~2).

The simplest model to approximate the dipole acceleration phaaé {4) consists of
introducing the following functionfy, modeling a spectral maximum arouad= 0 with a
piecewise constant phase:

fm(w) = — exp(—a0) expligy) 1r_(w) — explazw) expligs) g, (w). (7)

The constant coefficiert; corresponds to the left-phase (phase on the left of a maximum) and
¢, corresponds to the right-phase (phase on the right of a maximum). Coeffieicatsl o>,
assumed strictly positive, allow in particular to control the harmonic width. Finally, the function
1z_ is defined as 1 for negatiwes and O for positive ones, arig.(w) denotes the function
equal to 1 for positivevs and O for negative ones (Heaviside functions).

To model a spectral minimum, we considigr with a piecewise constant phase:

fn(w) = — explaiw) expigr) Iz (@) — exp(—azw) expligy) 1k, (w). (8)

We next compute the Fourier transform fif and f,, in order to determine if one or two asec
pulses are created. Our goal is therefore to determine for which condgiomn,, a1, ap) one
single asec pulse can be isolated.
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Figure 1. Harmonic phases; and ¢, emitted at times—t,, t; producing
nonsymmetric asec pulses (equatiaB)j.

From (7) and @), we next prove the following:

1. If ¢1# ¢tk (ke Z, whereZ is the set of negative and positive integers) two non-
symmetric asec pulses are created¢{f= ¢,, there exists one single asec pulse and
two symmetric asec pulses df; = ¢, + 7. Moreover, the asec pulse time durations are
proportional to Yo; and 1 as.

2. For two HHG emitted at timeg, and —t,, then two situations occur depending on the
phasesgp; andgs.

When two non-symmetric asec pulses are created we can identify if the more intense asec pulse
is created before or after the less intense one according to figure
First, we examine the Fourier transform faf which givesay:

(arp — it) expligpy) + (org +it) exp(ieo)
(g +it) (o —it)
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and
B = at’+bt+c
W= 2 ) @2+’
Ja=2(1—-cos¢1—¢2)), (10)

b =2(ay + ) SIN(p1 — ¢2),

C = 201100 COS(p1 — o) + af + oz%.

The function|ay (t)|? is naturally symmetric if and only i = 0, i.e.¢1 = ¢» +km, k € Z. In the
opposite case, we can directly conclude that this function is not symmetric, so that two pulses
are created. Now, ip, = ¢,, we observe that(t)|? degenerates into:

(1 + ap)?
t))? = . 11
lam (1) @2+ (11)
This allows us to conclude that osangleasec pulse is created.¢f = ¢, + 7, then
42+ (ag +a)?
law (1) = o (12)

(02 +12) (a5 +12)
which gives two symmetric asec pulses.
Classical Fourier analysis allows the conclusion that for smadhda; the two asec pulses
birth times are very close and naturally far for lasgeanda,. Assuming thatr; = o, = o > 0,
we sets=t/a and¢ = ¢; — ¢, then
, (1—cos(¢))s®+sin(¢)s+1+cos(¢)
las)|” = T+ - (13)

This then corresponds to the case-= 1. The distance between the two asec pulse maxima is
then proportional to Ax in accordance with statement 1 above.

For the second point, it is sufficient to study the rato= |a(ty)|/|a(—ta)|. We
simply observe that > 1 if and only if b <0 and only if sin(¢; —¢,) <0 and only if
P2 — T < P1 < P2

This simple analysis allows the transfer of the asec pulse generation conditions on the
behavior of the phase of the dipole acceleration specéum = |a(w)| exp(i¢ (w)). However,
it is not sufficiently precise as the behavior of the acceleration harmonic phase is in fact more
complex. We then consider a more general maximum defined by:

om(@) = —(Le (@1 (a1, 0, A+ 1z @ (@2 0. A)) explig@).  (14)
x is a smooth function defined by

explaw) — A, if explaw) < A,
x (o, w, A) = (15)
0, otherwise

We denote by2 the support ofy (i.e. x (x) = 0 for all x € 2¢) and A is a positive real constant
related to the depth of the minima. In order to study the asec pulse generation around a minimum
we introduce similarly the more general amplitude,

On(@) = —(1e_ (@)1 (01, 0. A) + Lz @) (—az. 0. A)) eXplip(@).  (16)

New Journal of Physics 10 (2008) 025033 (http://www.njp.org/)


http://www.njp.org/

7 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT
O,
Phase Phase 72

\Z/Z
—7/2

|a(a))|2 |a(60)|2

/2

0 w 0 0]

I

Time

Pulse

Time

Figure 2. One or two asec pulse generation from maxima and minima in the
HHG spectrum depending on the harmonic phagequation {2)).

For simplicity, we suppose that the phase is not piecewise constant but rather piecewise linear.
This allows us to conclude that:

1. Forgy defined in (4) with ¢ (w) = —rw/2, One single asec pulse is generated.

2. Whereas fogy, defined in 6) with ¢ (w) = —(7/2)(w + 1)1 (@) — (7/2)(w + 1) 1g_(w),
then two symmetric asec pulses are created.

To prove this, it is sufficient to observe that settitig=t — /2, we recover the case
¢ (w) = 0 studied above leading to one single attosecond pulse generation. The second case can
be proven in the same manner. It is sufficient to observe that sétting+ /2, we recover the
casep (w) = —mr /2 for negativaw and¢ (w) = /2 for positive ones, leading to two attosecond
pulses being generated. This is illustrated and summarized in figure

In general, we can observe periodic behavior of the acceleration harmonicdpfigse
arctarfim(a(w))/Re(@(w))). The period is often observed to be numerically equakdg ®ith
w the frequency of the incident laser pulse. We then consider the following phase (#/fsere
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Figure 3. Mathematical modeling of a minimum and a maximum in continuum
HHG spectruma(w)|? with phases of each harmonic.

the set of negative and positive integers):

$(@) =Y 2 (k- ) g 1k (@). (17)
ke27 2

Note that¢ (w) jumps from—n /2 to 7 /2 are due to Ré&(w)) cancellations (from positive to
zero, to negative values). We then consider the following phase function (see Jiguie
considergy at maxima andj, at minima defined inX4) and (L6) with a phase given byl().
We suppose for the sake of simplicity that= o, = @ > 0. Then one obtains fronL{) at a
maximum harmonic and for a large enough or small enaughatonly one single asec pulse
is created From (L6) at a minimum and for large enough or small enoughwo asec pulses
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Figure 4. Harmonic spectrum filtering around a maximum and a minimum for
2-cycle 800 nm,l = 10"*Wcm2 pulse with 5nm propagation lengthand
densityn = 10?° mol cnt3,

are generated. For both minima and maxima the above conclusions follow from application of
Fourier transforms as proved further in the appendix.

These results allow us to deduce when one or two asec pulses will be created by analysis of
HHG spectra and their phases. We now give an illustration of these analytic results in figures
and 5. The example we propose corresponds to the propagation over a very short distance
(~100 au~ 5nm) of a 2-cycle laser pulse at 800 nm in a dense mediut® mol cnT3) at
intensity 16 W cm~2. We then filter around a minimum (32th harmonic), and a maximum (27th
harmonic), figuret, the transmitted electric field HHG spectrum. As expected, respectively one
and two asec pulses (figusg are created. The pulse duration is obviously proportional to the
filtering range {400 as in the example). This study allows us to develop precise conditions to
generate one or two asec pulses.

4. HHG and asec pulse propagation

In this section, we examine propagation effects on asec pulse generation studied in3ection
and the harmonic intensities. We then consider the interaction of an aligned, hibldcule

gas with intense ultrashort laser pulses. We will also present a new propagation effect at high
intensity and density including discussion of driver phase effects.

4.1. Harmonic dynamics and asec pulse propagation

We study here the dynamics of 5-cycle Ti:S laser pulse at 800 nm inside a 1D aligrgasH
of molecular density 3 x 10*¥molcnt3. The intensity of the laser is ¥oWcm=2 and the
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Figure 5. One and two asec pulse generation, with= 10MWcm2, ny =
10°° mol cn3 and propagation length= 5 nm (2-cycle pulse 800 nm).
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internuclear distance is fixed (Born—OppenheimeRat 3.2 au. Simulations are here 1D and
the size of a Maxwell cell is equal 6z = 140 au~ 7.4 nm.

Of particular interest here is the intensity of the first low harmonics and in the cut-off
regime. From the Fourier transform of the transmitted electric gl¢) (see 8), (5) and ©))
propagating in the gas at different lengths, we study the evolution of the first (up to 11)
harmonic intensities. The harmonic spectrum of the transmitted field, denoted pgssesses,
in theory [L8], a cut-off frequency given inl) for recollision of the electron with the parent
ion. Collisions with neighboring ions such as in molecules produce larger dxjehse to large
collision energies exceedingl3U, [4]. We then investigate the harmonic intensities of the
transmitted electric field«, | Et(w)|?) for N =3, 7 and 11 at different distances. We observe
that as physically expected, the quadratic scaling (see figufenction of the propagation
distance (or molecular density) is well respected for small propagation distances. However, after
a sufficiently large propagation, nonlinear propagation effects appear (see in particular the 7th
and 11th harmonics). In particular, we can observe in fig(agthat the 3rd harmonic increases,
then is absorbed after a sufficiently large propagation due to the fact that the internuclear
distance has been fixed t®2%&u leading to a 3-photon resonance. These results are comparable
with previous atomic calculation®(, 30] (note that a 7-photon resonance also occurs when
Ry = 2 au).

We then define the total amount of energy of a selected asec pulse by:

wetAw
E.= f |Ec(t)|%dt, with Eq(t) = — f e ' Er(w) do, (18)
277" wc—Aw
where w, is the cut-off frequency andf — Aw, w. + Aw] the selected frequency range, to
isolate one asec pulse as described in se@ioftss an example, we analyze a filtered (with
Aw = 2,w; = 33) asec pulse (time duratier280 as) propagating over a distancé of 40 um.
We compute in figure/(b) its total amount of energf. (18) (function of the propagation
distance) for which oscillating behavior appears. This result is to be compared to res@Rk of
where a much larger propagation distance is considered but however with a much simpler model,
and where the polarization was deduced from one single atom response.

4.2. CEP dependence of HHG

We focus in this section on the effect of the incident laser pulse CEP, i.e. the carrier envelope
phase, or laser driver phage on the harmonic dynamics and consequently on the asec
generation. We are especially interested in the dipole accelerdi@and transmitted electric

field harmonic spectra but also in the classical electronic motion. As is well known, a simple
classical model allows some very precise information on the electron classical behavior to be
obtained, especially in the cut-off frequency of the harmonic spetirff-[4]. First, we will
introduce a classical model to describe the electron motion. Using this model, we will first
explain a phenomenon usually observed on harmonic spectra and asec pulse creation. Then,
we will study the harmonic spectra depending on the driver ppabestrating a new physical
phenomenon.

4.2.1. Classical recollision. Let us introduce the following Gaussian electric pulse:
E(w,t) = Egcos(wt +¢) exp(—(t — tg)?). (19)
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Figure 6. 3rd, 7th and 11th harmonic intensities (logscale), as function of
propagation length, up to 11um, for Ry = 3.2 au for 5-cycle 800 nm pulse

(I =10“Wcem 2, n=3.5x 10®¥mol cnr3).
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Figure 7. (a) 3rd harmonic absorption (logscale) as function of propagation
lengthl, for Ry = 3.2 au. (b) total energy in the filtered asec pulse depending
on the propagation length (up to 8tn) (harmonic range [25, 35]).

We present different return energy graphs, maxima of energy depending on the driver
phasep. The analysis consists of solving Newton’s equations for one electron (irk@u)=
—E(w, 1), z(ty) = 7y, z(ty) = vo from which are deduced the electronic trajectories and the
electronic return energy at timedepending o [4]. We propose this simple analysis to explain
why near the cut-off frequency, two trajectories separated-By? cycle are often observed
numerically in quantum calculationg4, 31]. To our knowledge, no rigorous explanation has
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Figure 8. (a) Return energyE,/U, (U, ponderomotive energy) dependence
on the phasep; of return @:/2r) for a monochromatic incident pulsg(t).
(b) Return energ¥ (t), equation {9) for ¢ =0 and three different birth timds

been provided for this specific phenomenon. For the special case of monochromatic electric
fields the energy of return (function of time) is represented in figag, as obtained from the
exact solution of Newton’s equations for initial velocity, maximum amplitudés, initial field
phasepo, return phase; and initial electron positiory [4]:

ot — o
w

Eo E
2(t) = (vo+ =" sin(¢o)) +(COS(gho) — COS(r) —, + 2. (20)
w w

We can then deduce the time delay between two trajectories; for instance this delay is
0.1 cycle if the return energ¥, is close to 25U, (U, is the ponderomotive energy)j, see
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Figure 9. Electric fieldsE(t) equation 19) with driver phasep and birth times
t; for a four cycle pulse (intensity (in att)me (in cycles)).

figure 8(a). For shorter pulses, this exact solution is no longer valid as the envelope of the
pulse has to be taken into account. We therefore solve numerically Newton’s equations for the
envelope given by exp-a(t —t;/2)?) wherea > 0.

In figures8(b), we represent the maximum return energy dependence on time¢(here
equal to Qcos pulse) in equationl®), for birth timest; plotted in figure9. We recall that
¢ = /2 (sin pulse) corresponds to the smallest energy, wheéread (and¢y = ) corresponds
to the largest one, as is currently observed numerically and experimentally in harmonic spectra.
In figure 10, we represent the harmonic spectrum dependence on the plakeNe remark
that, as expected, the driver phase- 7 /2 gives the shortest cut-off frequency ape= O the
longest one in accordance with the classical study presented above.

We finally present results with full propagation of a two- or four-cycle laser pulse within a
gas (again represented by many aligned TDSEs3)iarfd €)) and solved by the macroscopic
Maxwell’s equationsZ) with intensities 18 W cm~2. We compute the transmitted electric field
harmonics for 1 up to 12 800 TDSESs. These harmonics are obtained from the Fourier transform
of the total transmitted field through the gas. In this part, we are especially interested in the
harmonic spectra depending on the driver phase.

In figure 11, an interesting new phenomenon has to be noticed when comparing the
transmitted electric fieldE, (t) (related to many molecules) spectrum with the single molecule
dipole harmonics3). The single molecule dipole spectrum shows deep minima near the cut-off
frequency. As we have seen earlier, around these minima two trajectories can often be isolated.
By contrast around large continuous maxima (several harmonic orders) one single trajectory
returns. We numerically observe that near the cut-off frequency, the deep minima observed in the
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Figure 10. HHG minima dependence on the laser driver ph@ase
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Figure 11. Single molecule dipole acceleration harmonidé(4)|?) and
transmitted electric field intensity® (w)|2) (propagation length equal to 10 nm)
harmonics. (Deep minima near the cut-off have disappeared after propagation,
| =10"®Wcm2andny = 10"molcnTt3, ¢ =0.)

dipole acceleration harmonics disappear in the transmitted electric field harmonics (propagation
in the gas, less thanim). As a consequence, only one single trajectory seems to ‘survive’ (see
sections3 and4.2).

For larger propagation distances and a driver phase equal to 0, figsrews surprising
behavior for the 2-cycle pulse. Near the cut-off frequency, the HHG energy is larger than
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Figure 12. 2-cycle—total electric field harmonic order with propagation for
1,128Q 12800 TDSEs corresponding respectively td iMm, 74 x 1280 nm,
7.4x12800nm ( =10"Wcm2, constant molecular density equal g =
10°°mol cnm3, 800 nm ¢ = 0).

the classical return energy.13Uy(w) + |, after propagation. Furthermore we note thg
dependence of the efficiency of HHG with propagation, thus confirming it is a coherent
collective phenomenon depending on pairs of molecules.

We propose the following explanation for this phenomenon. For large demsityd short
(2-cycles) and intensd (= 10'°W cm™2) laser pulses a spectral broadening due to Kerr-effect
is usually observed3p]. Pulse compression is also operative at high densitidsatm) [L7].

We note, however, that our result is opposite to the prediction of cut-off shortening due to non-
adiabatic phase matching effec3]. Therefore, during the propagation spreading occurs to
frequencies less than the incident laser frequend§irst harmonic). This produces an increase

of the ponderomotive enerdy, (Eo/4@f ) whered, < wy. This results in the cut-off increasing

with propagation of the laser field in the gas. This phenomenon could be used, we suggest, to
produce shorter asec pulses.

5. Conclusion

Ultrashort intense pulse propagation effects on asec pulse generation have been investigated in a
1D Maxwell-TDSE approach for aligned 1D;kholecules as a function of various parameters:
driver pulse phase, propagation lengthand molecule densitg,. The simulations, although
limited to the 1D model, take into account field quantum effects, such as ionization, HHG,
interference, multiphoton resonance absorption and use a full second-order equation for the
propagated fields).

The first new result as reported in figuk2 is the increase of the HHG cut-off length with
increasing molecular density. We propose that this is due to pulse compression é&ffg¢haig
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broadening the spectrum of the driver (incident) pulse with the lower frequencies generated
increasing the ponderomotive enefkdyand the maximum cut-off lawlj. The second result is

the possibility of creating double asec pulses (fig)rby filtering and recombining harmonics
around sharp minima in the HHG spectrum. A detailed theory for the generation of such double
asec pulses, their width and temporal separation is presented in sgciwh the appendix.
Finally, multiphoton resonance effects are shown to have a limiting effect on total asec pulse
energy as a function of propagation lengths (figu;e5 etc). Further refinement of these effects

are being pursued in a full 3D Maxwell-TDSE treatment using a complete 3D numerical model
presented ing4] in order to verify nonlinear absorption effects in propagation of intense pulses
in condensed medi&8§.
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Appendix

To prove the existence of one or two asec pulse generation from HHG, we first begin by applying
the Fourier transform to our model equatidd,

+1
F(gu(t) = f expliot) gy (@)dw = ) f expiot)gu (o) dw. (A.1)
R -1

Le27

Now (denoting byZ the set of negative and positive integers d@dhe support ofy (see
section3))

{+1
F(ogu) = — Z/ exp(io(t —7/2) x (—a, », A) expint/2) dow
£

te2zrne Y 1

+1
— Zf exp(io(t —7/2)) x (o, w, A) explir£/2) do
-1

Le27ENQ

0
— f exp(iot —m/2)x(—a, , A) exp(—iwr/2) dw
-1

1
—/ exp(iw(t —m/2) x (o, w, A) exp(—iwnr/2) dw. (A.2)
0

If we suppose that is large enough, the first two terms are negligible compared to the two last
as y (o, w, A) decrease quickly to zero. This then corresponds to the case of a constant phase
¢1 = ¢, = 0 studied above and leading to one single asec pulse.

Now as we consider thagt has a compact supporj (is then zero outside a bounded
domain) a simple computation leads to (whé&e are the strictly negative integers afd
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the strictly positive ones):
exp((L+1)(it—im/2—a)) —exp((t —1)(it—in/2—a))

Fau®) = — exp(itn /2 — %)
(Gu () eezzz;m Ritm/2) B
_ Z exp(ign/z)exp((g“Ll)('t_'”/ZT“))__EXp((Z_l)('t_'”/2+“))
02758 it—imr/2+«a A3)

0
— / exp(iot —m/2)x(—a, w, A) exp(—ir/2)dw

1
1
—/ exp(iw(t —m/2) x (o, w, A) exp(—im/2)dw + C(a, A).
0

In the previous formulaC (o, A) (denoted byC in the following) is a real constant that depends
ona andA sincey is defined as the sum of an exponential function and a real constéinte
set?¢ < —¢ in the first sum on the r.h.s., we obtain:

Flamt)=— ) exp—itr/2)

£e27;5NQ2

exp((—€+1)(it —in/2 —a)) —exp((—€ — 1)(it —in/2 — a))
x it—i7/2—a
B Z explitn /2) exp((¢+1)(it —im/2 -'I-oz)). —exp((¢ — D(it —in/2+a))

" it—im/2+«a

Le2ZiN2

B (1— ?X[on + i7.1/2— it) N EX[X?( +it — i.n/Z) - 1) +C (A4)
it—a—ix/2 it+a —im/2

Note also that € 2Z N Q2 so that expiér/2) = exp(—ilx/2). In the following, we will
denoteQ2,, = 275 N Q2

Flgu®) = — ) explitn/2)

ey
y (exp((ﬁ —Da)exp((€ —D(ir/2—it)) —exp((£ + Da) exp((L+ 1) (ir/2—it))
it—in/2—«
N exp((£+ D) exp((£+1)(it —ir/2)) —exp((€ — D)) exp((£ — 1) (it — iTL'/Z)))
it—im/2+a
B (1— (?Xp(oz + i7.1/2— it) N eXp((.)( +it — ile/Z) — 1) ‘C. (A5)
it—a—Iim/2 it+o—im/2

Thus, ifweseB =t — /2

exp(—a) exp(iB) — explor) exp(—i B))

Flgu®) = = Y exp(t(in/2+a)) (exp(—iEB)( —

5692+

expla) exp(iB) — exp(—a) exp(—i B)))

iB+o

+ exp(i¢B) <

1—expa—iB) expa+iB)—1\ . (A.6)
_( iB—«a iB+o ) - |
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If we set now

No(a) = exp(ie B) (

expla) exp(iB) — exp(—a) exp(—i B))

iB+a A7)
_ expla+iB)—1 '
and M(x) = Bra .
Then:
FOu) = — Z exp(l(in/2+a))(Ne(a) + Ny (@) — (M(a) + M(a)*) +C. (A.8)
e+
It is easy to deduce for very smallthat
Ma)+ M (@) = 250712 | o (A.9)
t—m/2
and that
Ne(o) + N () =4 cos(L(t — n/2))SIr:(t_;nj/T£2) +O(a) (A.10)
and then after simplification of the summation by Taylor expansion, we have
F(gu()) = —ZM (1 +2 Z exp(l(ir/2+a)) coqt —m/2) + (’)(a)) +C. (A.l11)
t—m/2

ZEQQ+

We then deduce that this model produces one main centered pulse and residual oscillation taking
the modulus ofF (gu (t)).
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