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Abstract. The dynamics and propagation effects in attosecond (asec) pulse
generation from high-order harmonic generation (HHG) of aligned one-
dimensional (1D) H+2 molecules are investigated from numerical solutions of
fully coupled Maxwell and time-dependent Schrödinger equations (Maxwell-
TDSEs), in the highly nonlinear nonperturbative regime of laser–molecule
interaction. Density, laser-phase and propagation length effects are studied on
the total electric field and nonlinear polarization from the Maxwell-TDSE for
intense few cycle (800 nm) laser pulses interacting with a 1D H+

2 gas. We show
how single and double asec pulses can be generated and propagated as a function
of the phase of individual harmonics created by ultrashort intense laser pulses
in aligned H+

2 molecules. We find furthermore extension of maximum HHG
plateaux with increasing gas pressure.
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1. Introduction

High-order harmonic generation (HHG) in atomic gases by high intensity ultrashort laser pulses
is the main method for producing coherent extreme ultraviolet and attosecond (asec) pulses [1].
This is based on a universal model of electron-recollision with a maximum harmonic energy,

Nh̄ω = Ip + 3.17Up, (1)

whereIp is the ionization potential of the atom,Up= e2E2/4mω2 is the ponderomotive energy
of the electron in an oscillatory fieldE(t) of maximum intensityI = eE2/8π and frequency
ω [2]–[7]. Molecules offer an interesting new medium as both ionization and recombination
steps are dependent on the particular symmetry of the highest occupied molecular orbital
(HOMO) and orientation [5]–[8]. Furthermore, at large distances, stretched or dissociated
molecules offer the possibility of obtaining harmonics well beyond the 3Up cut-off law (1)
[5, 9, 10]. The recombination model allows a full tomographic reconstruction of the HOMO
to be performed (but a high degree of spatial alignment of the molecules is required [11]–
[13]). The mathematical steps in structural retrieval from HHG are based upon the strong field
approximation (SFA), a single active electron model and a three-step process [2, 3]: (i) tunneling
ionization with zero initial electron velocity; (ii) acceleration in the laser fieldE(t); and (iii)
recombination back into the bound electronic state. This simple three-step model can be shown
to always produce a maximum return energy given by (1) even with nonzero initial velocity
upon ionization [4]. Nevertheless certain important issues remain, such as the influence of the
intense laser field upon the bound electronic states upon recombination [14], depletion of the
initial ground state [15], the influence of the Coulomb potential upon the continuum electron
states [16], all effects neglected in SFA. Finally, one needs to consider macroscopic propagation
effects as these lead to interesting new phenomena such as filamentation [17, 18] with the
conclusion that ionization dynamics can strongly influence the synthesis of isolated attosecond
pulses [19]. In this paper, we address the problem of asec pulse generation and propagation
by HHG in an aligned molecular medium. We focus our attention on the single electron
H+

2 system which nevertheless involves coupled electron–nuclear motion beyond the Born–
Oppenheimer approximation [20]. For this H+

2 system a previous time-dependent Schrödinger
equation (TDSE) simulation with exact non-Born–Oppenheimer solutions leads to enhanced
ionization and HHG in the presence of an asec XUV and IR fs pulse with the resulting
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efficient generation of new asec pulses [21]. An appropriate Maxwell-TDSE equation for this
system was used based on a slowly varying envelope approximation (SVEA) leading to a
first-order partial differential equation for the coupled Maxwell-TDSE system [22]. Such an
approach neglects ground state depletion due to ionization, neglects backward propagation and
is therefore appropriate for low field strengths. It was nevertheless found that initial asec pulses
could be shortened further in time through the resultant HHG asec pulses produced nonlinearly
in the presence of an intense IR fs pulse [23]. In the present paper, we extend the Maxwell-TDSE
approach beyond SVEA in order to include the above neglected effects. Particular attention will
be given to the harmonic phases to understand more precisely the asec pulse generation.

Section 2 is devoted to the presentation of the Maxwell–Schrödinger model initially
introduced in [24, 25]. In section3, we study the asec pulse generation mechanism using
in particular a model describing the transmitted electric field phase. Section4 is devoted to
numerical simulations for the propagation of electric fields and asec pulses inside an aligned H+

2
gaseous medium. We also present a new phenomenon, a study of the driver phase effect on the
HHG and laser pulse propagation.

2. Maxwell-TDSE model

We study the process of asec pulse generation by the analysis of harmonic phases, and their
behavior depending on the driver phase, using a model that is a micro–macro Maxwell-TDSE
approach [24, 26]. It consists of the coupling of the Maxwell equations and TDSEs within or
beyond the Born–Oppenheimer approximation. The model is totally non-perturbative, vectorial
and multidimensional, taking into account ionization, and high-order nonlinearities going far
beyond classical and semi-classical nonlinear Maxwell and Schrödinger models [25], [27]–[29].
In the present work, we restrict ourselves to 1D TDSEs and 1D propagation in the fixed nuclei
approximation (Born–Oppenheimer), for which the equations are:∂t Bx(z′, t)= c∂z′Ey(z′, t),

∂t Ey(z′, t)= c∂z′Bx(z′, t)−4π∂t Py(z′, t),
(2)

where

Py(z
′, t)=−n(z′)

∫
ψz′(y, t)yψ

∗

z′(y, t)dy=−n(z′)dz′(t). (3)

n(z′) is the molecular density taken equal to a constantn0 in the following,ψz′ the wavefunction
of a molecule located atz′ (the dipole approximation is used here). In the following, we
will denote by E the electric field componentEy, and by P the componentPy of the field-
induced polarization. In the TDSEs, we suppose that the electric fieldE is constant in space
at the molecular scale1y/λ� 1, so that the electric field inz′, E(z′, t), is rewrittenEz′(t).
Alternatively one can use the acceleration of the electron as given in [14] (Fourier transform
â(ω)= ω2d(ω)).

a(z′, t)=
∫
ψz′(y, t)

(
−
∂V(y, R0)

∂y
+ E(t)

)
ψ∗z′(y, t)dy. (4)

In the 1D framework, we can then rewrite equations (3) and (4) as the second-order wave
equation

∂2
t t E(z

′, t)− c2∂2
z′z′E(z

′, t)=−4π∂2
t t P(t). (5)
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The 1D electron wavefunction is solved by the following TDSE:

i∂tψz′(y, t)=

(
−
4

2
+ Vc(y, R0)+ yEz′(t)

)
ψz′(y, t). (6)

In the previous equation,R0 denotes the molecular internuclear distance,z′ the field propagation
coordinate andy the electric field polarization corresponding to the electron coordinate. The
field model allows us to consider high-order nonlinearities as well as ionization. The model
is solved using a finite difference method described in detail in [24], where a full non-Born–
Oppenheimer formulation is also presented. In the model, we solve one TDSE per Maxwell cell,
using a classical Crank–Nicolson scheme, corresponding ton01z′ molecules. Each Maxwell
spatial step1z′ is chosen such that1z′ < λmax/5, whereλmax is the largest internal wavelength
considered in the computation (allowing then to consider high-order harmonics). For details we
refer to [24]. This model is then used to study asec pulse generation and propagation in the
presence of HHG.

In conclusion, as we solve one single TDSE per Maxwell cell1z′, a computation ofN
TDSEs corresponds to a sample of gas of lengthl = N1z′ and containingN1z′n0 molecules,
where the molecular densityn0 is supposed constant.

3. Theoretical study of harmonic phase effects on asec pulse generation

In order to understand the generation and dynamics of asec pulses, we propose a model to
approximate harmonic spectrum extrema. More precisely, we propose to approximate by a
continuous function the maxima and minima of the harmonic spectrum and to isolate one or two
asec pulses by Fourier transform filtering of these extrema. We then plan to model the frequency-
dependent harmonic phase functionφ(ω)= arctan(Im(â(ω))/Re(â(ω)) of the acceleration
â(ω)= |â(ω)|exp(iφ(ω)), whereâ(ω) is the Fourier transform ofa(t) defined in (4). This will
be done near the cut-off frequency (a few-cycle laser pulse withI ∼ 1015 W cm−2).

The simplest model to approximate the dipole acceleration phase ofa(t) (4) consists of
introducing the following functionfM, modeling a spectral maximum aroundω = 0 with a
piecewise constant phase:

fM(ω)=− exp(−α1ω)exp(iφ1)1R−(ω)−exp(α2ω)exp(iφ2)1R+(ω). (7)

The constant coefficientφ1 corresponds to the left-phase (phase on the left of a maximum) and
φ2 corresponds to the right-phase (phase on the right of a maximum). Coefficientsα1 andα2,
assumed strictly positive, allow in particular to control the harmonic width. Finally, the function
1R− is defined as 1 for negativeωs and 0 for positive ones, and1R+(ω) denotes the function
equal to 1 for positiveωs and 0 for negative ones (Heaviside functions).

To model a spectral minimum, we considerfm with a piecewise constant phase:

fm(ω)=− exp(α1ω)exp(iφ1)1R−(ω)−exp(−α2ω)exp(iφ2)1R+(ω). (8)

We next compute the Fourier transform offM and fm in order to determine if one or two asec
pulses are created. Our goal is therefore to determine for which condition(φ1, φ2, α1, α2) one
single asec pulse can be isolated.
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Figure 1. Harmonic phasesφ1 and φ2 emitted at times−ta, ta producing
nonsymmetric asec pulses (equation (13)).

From (7) and (8), we next prove the following:

1. If φ1 6= φ2 + kπ (k ∈ Z, whereZ is the set of negative and positive integers) two non-
symmetric asec pulses are created. Ifφ1= φ2, there exists one single asec pulse and
two symmetric asec pulses ifφ1= φ2 +π . Moreover, the asec pulse time durations are
proportional to 1/α1 and 1/α2.

2. For two HHG emitted at timesta and−ta, then two situations occur depending on the
phasesφ1 andφ2.

When two non-symmetric asec pulses are created we can identify if the more intense asec pulse
is created before or after the less intense one according to figure1.
First, we examine the Fourier transform offM which givesaM:

aM(t)=
(α2− it)exp(iφ1)+ (α1 + it)exp(iφ2)

(α1 + it)(α2− it)
, (9)
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and 

|aM(t)|2=
at2 + bt + c

(α2
1 + t2)(α2

2 + t2)
,

a= 2(1− cos(φ1−φ2)),

b= 2(α1 +α2) sin(φ1−φ2),

c= 2α1α2 cos(φ1−φ2)+α2
1 +α2

2.

(10)

The function|aM(t)|2 is naturally symmetric if and only ifb= 0, i.e.φ1= φ2 + kπ, k ∈ Z. In the
opposite case, we can directly conclude that this function is not symmetric, so that two pulses
are created. Now, ifφ1= φ2, we observe that|a(t)|2 degenerates into:

|aM(t)|
2
=

(α1 +α2)
2

(α2
1 + t2)(α2

2 + t2)
. (11)

This allows us to conclude that onesingleasec pulse is created. Ifφ1= φ2 +π , then

|aM(t)|
2
=

4t2 + (α1 +α2)
2

(α2
1 + t2)(α2

2 + t2)
. (12)

which gives two symmetric asec pulses.
Classical Fourier analysis allows the conclusion that for smallα1 andα2 the two asec pulses

birth times are very close and naturally far for largeα1 andα2. Assuming thatα1= α2= α > 0,
we sets= t/α andφ = φ1−φ2, then

|a(s)|2=
(1− cos(φ))s2 + sin(φ)s+ 1 + cos(φ)

1 +s2
. (13)

This then corresponds to the caseα = 1. The distance between the two asec pulse maxima is
then proportional to 1/α in accordance with statement 1 above.

For the second point, it is sufficient to study the ratioc := |a(ta)|/|a(−ta)|. We
simply observe thatc> 1 if and only if b< 0 and only if sin(φ1−φ2) < 0 and only if
φ2−π < φ1 < φ2.

This simple analysis allows the transfer of the asec pulse generation conditions on the
behavior of the phase of the dipole acceleration spectrumâ(ω)= |â(ω)|exp(iφ(ω)). However,
it is not sufficiently precise as the behavior of the acceleration harmonic phase is in fact more
complex. We then consider a more general maximum defined by:

gM(ω)=−
(
1R−(ω)χ(−α1, ω, A)+ 1R+(ω)χ(α2, ω, A)

)
exp(iφ(ω)). (14)

χ is a smooth function defined by

χ(α, ω, A)=

exp(αω)− A, if exp(αω)6 A,

0, otherwise.
(15)

We denote by� the support ofχ (i.e.χ(x)= 0 for all x ∈�c) andA is a positive real constant
related to the depth of the minima. In order to study the asec pulse generation around a minimum
we introduce similarly the more general amplitude,

gm(ω)=−
(
1R−(ω)χ(α1, ω, A)+ 1R+(ω)χ(−α2, ω, A)

)
exp(iφ(ω)). (16)
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Figure 2. One or two asec pulse generation from maxima and minima in the
HHG spectrum depending on the harmonic phaseφ (equation (12)).

For simplicity, we suppose that the phase is not piecewise constant but rather piecewise linear.
This allows us to conclude that:

1. For gM defined in (14) with φ(ω)=−πω/2, one single asec pulse is generated.

2. Whereas forgm defined in (16) with φ(ω)=−(π/2)(ω + 1)1R−(ω)− (π/2)(ω + 1)1R−(ω),
then two symmetric asec pulses are created.

To prove this, it is sufficient to observe that settingt ′ = t −π/2, we recover the case
φ(ω)= 0 studied above leading to one single attosecond pulse generation. The second case can
be proven in the same manner. It is sufficient to observe that settingt ′ = t +π/2, we recover the
caseφ(ω)=−π/2 for negativeω andφ(ω)= π/2 for positive ones, leading to two attosecond
pulses being generated. This is illustrated and summarized in figure2.

In general, we can observe periodic behavior of the acceleration harmonic phaseφ(ω)=

arctan(Im(â(ω))/Re(â(ω))). The period is often observed to be numerically equal to 2ωl, with
ωl the frequency of the incident laser pulse. We then consider the following phase (whereZ is
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Figure 3. Mathematical modeling of a minimum and a maximum in continuum
HHG spectrum|a(ω)|2 with phases of each harmonic.

the set of negative and positive integers):

φ(ω)=
∑
k∈2Z

π

2
(k−ω)1[k−1,k+1[(ω). (17)

Note thatφ(ω) jumps from−π/2 to π/2 are due to Re(â(ω)) cancellations (from positive to
zero, to negative values). We then consider the following phase function (see figure3). We
considergM at maxima andgm at minima defined in (14) and (16) with a phase given by (17).
We suppose for the sake of simplicity thatα1= α2= α > 0. Then one obtains from (14) at a
maximum harmonic and for a large enough or small enoughα, thatonly one single asec pulse
is created. From (16) at a minimum and for large enough or small enoughα, two asec pulses
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are generated. For both minima and maxima the above conclusions follow from application of
Fourier transforms as proved further in the appendix.

These results allow us to deduce when one or two asec pulses will be created by analysis of
HHG spectra and their phases. We now give an illustration of these analytic results in figures4
and 5. The example we propose corresponds to the propagation over a very short distance
(∼100 au∼ 5 nm) of a 2-cycle laser pulse at 800 nm in a dense medium (∼1020 mol cm−3) at
intensity 1014 W cm−2. We then filter around a minimum (32th harmonic), and a maximum (27th
harmonic), figure4, the transmitted electric field HHG spectrum. As expected, respectively one
and two asec pulses (figure5) are created. The pulse duration is obviously proportional to the
filtering range (∼400 as in the example). This study allows us to develop precise conditions to
generate one or two asec pulses.

4. HHG and asec pulse propagation

In this section, we examine propagation effects on asec pulse generation studied in section3
and the harmonic intensities. We then consider the interaction of an aligned 1D H+

2 molecule
gas with intense ultrashort laser pulses. We will also present a new propagation effect at high
intensity and density including discussion of driver phase effects.

4.1. Harmonic dynamics and asec pulse propagation

We study here the dynamics of 5-cycle Ti:S laser pulse at 800 nm inside a 1D aligned H+
2-gas

of molecular density 3.5×1018 mol cm−3. The intensity of the laser is 1014 W cm−2 and the
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internuclear distance is fixed (Born–Oppenheimer) atR0= 3.2 au. Simulations are here 1D and
the size of a Maxwell cell is equal to1z′ = 140 au∼ 7.4 nm.

Of particular interest here is the intensity of the first low harmonics and in the cut-off
regime. From the Fourier transform of the transmitted electric fieldEz′(t) (see (3), (5) and (6))
propagating in the gas at different lengths, we study the evolution of the first (up to 11)
harmonic intensities. The harmonic spectrum of the transmitted field, denoted byET, possesses,
in theory [18], a cut-off frequency given in (1) for recollision of the electron with the parent
ion. Collisions with neighboring ions such as in molecules produce larger ordersN, due to large
collision energies exceeding 3.17Up [4]. We then investigate the harmonic intensities of the
transmitted electric field (ω, |ET(ω)|

2) for N = 3,7 and 11 at different distances. We observe
that as physically expected, the quadratic scaling (see figure6) function of the propagation
distance (or molecular density) is well respected for small propagation distances. However, after
a sufficiently large propagation, nonlinear propagation effects appear (see in particular the 7th
and 11th harmonics). In particular, we can observe in figure7(a) that the 3rd harmonic increases,
then is absorbed after a sufficiently large propagation due to the fact that the internuclear
distance has been fixed to 3.2 au leading to a 3-photon resonance. These results are comparable
with previous atomic calculations [20, 30] (note that a 7-photon resonance also occurs when
R0= 2 au).

We then define the total amount of energy of a selected asec pulse by:

Ec=

∫
|Ec(t)|

2 dt, with Ec(t)=
1

2π

∫ ωc+1ω

ωc−1ω

e−iωt ÊT(ω)dω, (18)

whereωc is the cut-off frequency and [ωc−4ω,ωc +4ω] the selected frequency range, to
isolate one asec pulse as described in section3. As an example, we analyze a filtered (with
1ω = 2,ωc= 33) asec pulse (time duration∼280 as) propagating over a distance ofl ∼ 40µm.
We compute in figure7(b) its total amount of energyEc (18) (function of the propagation
distance) for which oscillating behavior appears. This result is to be compared to results of [22]
where a much larger propagation distance is considered but however with a much simpler model,
and where the polarization was deduced from one single atom response.

4.2. CEP dependence of HHG

We focus in this section on the effect of the incident laser pulse CEP, i.e. the carrier envelope
phase, or laser driver phaseφ on the harmonic dynamics and consequently on the asec
generation. We are especially interested in the dipole acceleration (4) and transmitted electric
field harmonic spectra but also in the classical electronic motion. As is well known, a simple
classical model allows some very precise information on the electron classical behavior to be
obtained, especially in the cut-off frequency of the harmonic spectra (1) [2]–[4]. First, we will
introduce a classical model to describe the electron motion. Using this model, we will first
explain a phenomenon usually observed on harmonic spectra and asec pulse creation. Then,
we will study the harmonic spectra depending on the driver phaseφ illustrating a new physical
phenomenon.

4.2.1. Classical recollision. Let us introduce the following Gaussian electric pulse:

E(ω, t)= E0 cos(ωt +φ)exp(−(t − t0)
2). (19)
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We present different return energy graphs, maxima of energy depending on the driver
phaseφ. The analysis consists of solving Newton’s equations for one electron (in au):z̈(t)=
−E(ω, t), z(t0)= z0, ż(t0)= v0 from which are deduced the electronic trajectories and the
electronic return energy at timetf depending onφ [4]. We propose this simple analysis to explain
why near the cut-off frequency, two trajectories separated by∼0.2 cycle are often observed
numerically in quantum calculations [14, 31]. To our knowledge, no rigorous explanation has
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been provided for this specific phenomenon. For the special case of monochromatic electric
fields the energy of return (function of time) is represented in figure8(a), as obtained from the
exact solution of Newton’s equations for initial velocityv0, maximum amplitudeE0, initial field
phaseφ0, return phaseφf and initial electron positionz0 [4]:

z(tf)=
(
v0 +

E0

ω
sin(φ0)

)φf −φ0

ω
+ (cos(φ0)− cos(φf))

E0

ω2
+ z0. (20)

We can then deduce the time delay between two trajectories; for instance this delay is
0.1 cycle if the return energyEr is close to 2.95Up (Up is the ponderomotive energy (1)), see

New Journal of Physics 10 (2008) 025033 (http://www.njp.org/)

http://www.njp.org/


15

−2 −1.5 −1.0 −0.5
t (cycle)

0.5 1.0 1.5 2.0
−0.25

−0.2

−0.15

−0.1

−0.05

E(t)

0.05

0.1

0.15

0.2

0.25
φ=0
φ=π/4
φ=π/3
φ=π/2
φ=π

Birth time t1

Birth time t2

Birth time t3

Figure 9. Electric fieldsE(t) equation (19) with driver phaseφ and birth times
ti for a four cycle pulse (intensity (in au)/time (in cycles)).

figure 8(a). For shorter pulses, this exact solution is no longer valid as the envelope of the
pulse has to be taken into account. We therefore solve numerically Newton’s equations for the
envelope given by exp(−α(t − tf/2)2) whereα > 0.

In figures8(b), we represent the maximum return energy dependence on time (hereφ is
equal to 0, cos pulse) in equation (19), for birth times ti plotted in figure9. We recall that
φ = π/2 (sin pulse) corresponds to the smallest energy, whereasφ = 0 (andφ = π ) corresponds
to the largest one, as is currently observed numerically and experimentally in harmonic spectra.
In figure 10, we represent the harmonic spectrum dependence on the phaseφ [5]. We remark
that, as expected, the driver phaseφ = π/2 gives the shortest cut-off frequency andφ = 0 the
longest one in accordance with the classical study presented above.

We finally present results with full propagation of a two- or four-cycle laser pulse within a
gas (again represented by many aligned TDSEs via (3) and (6)) and solved by the macroscopic
Maxwell’s equations (2) with intensities 1015 W cm−2. We compute the transmitted electric field
harmonics for 1 up to 12 800 TDSEs. These harmonics are obtained from the Fourier transform
of the total transmitted field through the gas. In this part, we are especially interested in the
harmonic spectra depending on the driver phase.

In figure 11, an interesting new phenomenon has to be noticed when comparing the
transmitted electric fieldEz′(t) (related to many molecules) spectrum with the single molecule
dipole harmonics (3). The single molecule dipole spectrum shows deep minima near the cut-off
frequency. As we have seen earlier, around these minima two trajectories can often be isolated.
By contrast around large continuous maxima (several harmonic orders) one single trajectory
returns. We numerically observe that near the cut-off frequency, the deep minima observed in the
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Figure 10. HHG minima dependence on the laser driver phaseφ.
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Figure 11. Single molecule dipole acceleration harmonics (|â(ω)|2) and
transmitted electric field intensity (|Ê(ω)|2) (propagation length equal to 10 nm)
harmonics. (Deep minima near the cut-off have disappeared after propagation,
I = 1015 W cm−2 andn0= 1020 mol cm−3, φ = 0.)

dipole acceleration harmonics disappear in the transmitted electric field harmonics (propagation
in the gas, less than 1µm). As a consequence, only one single trajectory seems to ‘survive’ (see
sections3 and4.2).

For larger propagation distances and a driver phase equal to 0, figure12 shows surprising
behavior for the 2-cycle pulse. Near the cut-off frequency, the HHG energy is larger than
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Figure 12. 2-cycle—total electric field harmonic order with propagation for
1,1280,12 800 TDSEs corresponding respectively to 7.4 nm, 7.4×1280 nm,
7.4×12 800 nm (I = 1015 W cm−2, constant molecular density equal ton0=

1020 mol cm−3,800 nm, φ = 0).

the classical return energy 3.17Up(ωl)+ Ip after propagation. Furthermore we note then2
0

dependence of the efficiency of HHG with propagation, thus confirming it is a coherent
collective phenomenon depending on pairs of molecules.

We propose the following explanation for this phenomenon. For large densityn0 and short
(2-cycles) and intense (I = 1015 W cm−2) laser pulses a spectral broadening due to Kerr-effect
is usually observed [32]. Pulse compression is also operative at high densities (∼1 atm) [17].
We note, however, that our result is opposite to the prediction of cut-off shortening due to non-
adiabatic phase matching effects [28]. Therefore, during the propagation spreading occurs to
frequencies less than the incident laser frequencyωl (first harmonic). This produces an increase
of the ponderomotive energyUp (E0/4ω̃2

l ) whereω̃l < ωl. This results in the cut-off increasing
with propagation of the laser field in the gas. This phenomenon could be used, we suggest, to
produce shorter asec pulses.

5. Conclusion

Ultrashort intense pulse propagation effects on asec pulse generation have been investigated in a
1D Maxwell-TDSE approach for aligned 1D H+

2 molecules as a function of various parameters:
driver pulse phaseφ, propagation lengthl and molecule densityn0. The simulations, although
limited to the 1D model, take into account field quantum effects, such as ionization, HHG,
interference, multiphoton resonance absorption and use a full second-order equation for the
propagated field (5).

The first new result as reported in figure12 is the increase of the HHG cut-off length with
increasing molecular density. We propose that this is due to pulse compression effects [17], thus
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broadening the spectrum of the driver (incident) pulse with the lower frequencies generated
increasing the ponderomotive energyUp and the maximum cut-off law (1). The second result is
the possibility of creating double asec pulses (figure5) by filtering and recombining harmonics
around sharp minima in the HHG spectrum. A detailed theory for the generation of such double
asec pulses, their width and temporal separation is presented in section3 and the appendix.
Finally, multiphoton resonance effects are shown to have a limiting effect on total asec pulse
energy as a function of propagation lengths (figures6, 7, etc). Further refinement of these effects
are being pursued in a full 3D Maxwell-TDSE treatment using a complete 3D numerical model
presented in [24] in order to verify nonlinear absorption effects in propagation of intense pulses
in condensed media [33].
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Appendix

To prove the existence of one or two asec pulse generation from HHG, we first begin by applying
the Fourier transform to our model equation (14),

F(gM(t))=
∫
R

exp(iωt)gM(ω)dω =
∑
`∈2Z

∫ `+1

`−1
exp(iωt)gM(ω)dω. (A.1)

Now (denoting byZ the set of negative and positive integers and� the support ofχ (see
section3))

F(gM(t))= −
∑

`∈2Z∗−∩�

∫ `+1

`−1
exp(iω(t −π/2))χ(−α, ω, A)exp(iπ`/2)dω

−

∑
`∈2Z∗+∩�

∫ `+1

`−1
exp(iω(t −π/2))χ(α, ω, A)exp(iπ`/2)dω

−

∫ 0

−1
exp(iω(t −π/2))χ(−α, ω, A)exp(−iωπ/2)dω

−

∫ 1

0
exp(iω(t −π/2))χ(α, ω, A)exp(−iωπ/2)dω. (A.2)

If we suppose thatα is large enough, the first two terms are negligible compared to the two last
asχ(α, ω, A) decrease quickly to zero. This then corresponds to the case of a constant phase
φ1= φ2= 0 studied above and leading to one single asec pulse.

Now as we consider thatχ has a compact support (χ is then zero outside a bounded
domain) a simple computation leads to (whereZ∗

−
are the strictly negative integers andZ∗+
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the strictly positive ones):

F(gM(t))= −
∑

`∈2Z∗−∩�

exp(i`π/2)
exp((`+ 1)(it − iπ/2−α))−exp((`−1)(it − iπ/2−α))

it − iπ/2−α

−

∑
`∈2Z∗+∩�

exp(i`π/2)
exp((`+ 1)(it − iπ/2 +α))−exp((`−1)(it − iπ/2 +α))

it − iπ/2 +α

−

∫ 0

−1
exp(iω(t −π/2))χ(−α, ω, A)exp(−iπ/2)dω

−

∫ 1

0
exp(iω(t −π/2))χ(α, ω, A)exp(−iπ/2)dω + C(α, A).

(A.3)

In the previous formula,C(α, A) (denoted byC in the following) is a real constant that depends
onα andA sinceχ is defined as the sum of an exponential function and a real constantA. If we
set`←−` in the first sum on the r.h.s., we obtain:

F(gM(t))= −
∑

`∈2Z∗+∩�

exp(−i`π/2)

×
exp((−`+ 1)(it − iπ/2−α))−exp((−`−1)(it − iπ/2−α))

it − iπ/2−α

−

∑
`∈2Z∗+∩�

exp(i`π/2)
exp((`+ 1)(it − iπ/2 +α))−exp((`−1)(it − iπ/2 +α))

it − iπ/2 +α

−

(1−exp(α + iπ/2− it)

it −α− iπ/2
+

exp(α + it − iπ/2)−1

it +α− iπ/2

)
+ C. (A.4)

Note also that̀ ∈ 2Z∩� so that exp(i`π/2)= exp(−i`π/2). In the following, we will
denote�2+= 2Z∗+∩�

F(gM(t))= −
∑
`∈�2+

exp(i`π/2)

×

(
exp((`−1)α)exp((`−1)(iπ/2− it))−exp((`+ 1)α)exp((`+ 1)(iπ/2− it))

it − iπ/2−α

+
exp((`+ 1)α)exp((`+ 1)(it − iπ/2))−exp((`−1)α)exp((`−1)(it − iπ/2))

it − iπ/2 +α

)
−

(1−exp(α + iπ/2− it)

it −α− iπ/2
+

exp(α + it − iπ/2)−1

it +α− iπ/2

)
+ C. (A.5)

Thus, if we setB= t −π/2

F(gM(t))= −
∑
`∈�2+

exp(`(iπ/2 +α))

(
exp(−i`B)

(
exp(−α)exp(iB)−exp(α)exp(−iB)

iB−α

)

+ exp(i`B)

(
exp(α)exp(iB)−exp(−α)exp(−iB)

iB +α

))
−

(1−exp(α− iB)

iB−α
+

exp(α + iB)−1

iB +α

)
+ C. (A.6)
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If we set now

N`(α)= exp(i`B)

(
exp(α)exp(iB)−exp(−α)exp(−iB)

iB +α

)
,

(A.7)
and M(α)=

exp(α + iB)−1

iB +α
.

Then:

F(gM(t))=−
∑
`∈�2+

exp(`(iπ/2 +α))(N`(α)+N ∗` (α))− (M(α)+M(α)∗)+ C. (A.8)

It is easy to deduce for very smallα that

M(α)+M∗(α)= 2
sin(t −π/2)

t −π/2
+O(α) (A.9)

and that

N`(α)+N ∗` (α)= 4 cos(`(t −π/2))
sin(t −π/2)

t −π/2
+O(α) (A.10)

and then after simplification of the summation by Taylor expansion, we have

F(gM(t))=−2
sin(t −π/2)

t −π/2

(
1 + 2

∑
`∈�2+

exp(`(iπ/2 +α)) cos(t −π/2) +O(α)
)

+ C. (A.11)

We then deduce that this model produces one main centered pulse and residual oscillation taking
the modulus ofF(gM(t)).
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